Acid Gas Progress Report Requirements

Operation of an acid gas disposal well requires the permit holder to submit a Progress Report to the Commission twice a year, filed within 60 days after the end of each 6-month period.

The progress report summarizes well operations over the reporting period, highlighting any anomalies or trends of significance for awareness of both the operator and the regulator, and provides information to demonstrate that the conditions of the approval are being met. The Report includes data submitted to the Commission through other reporting, but provides a record all relevant analyses and source data in a single location.

Mid-Year Report

Due by August 30th each year, the mid-year report will contain data to the end of June of the operating year and must contain at least the following:

1. Details of any workover or treatment program done on the well with reasons for the workover, workover daily reports and results of the workover.

2. A summary table of monthly data for all pertinent operating conditions, from the start of disposal. See example Table 1.

3. Plot(s) of monthly injection volume and average tubing, casing and, if possible, bottom hole pressure versus time on an ongoing basis

4. A plot showing average daily rate, pressure and wellhead temperature.

Year-End Report

Due by March 1st of the following year, the year-end report will contain data to the end of December and must contain the following:

1. Details of any workover or treatment program done on the well with reasons for the workover, workover daily reports and results of the workover,

2. A discussion of any changes in injection equipment and operations,

3. A general review of the operation of the project including identification of problems, remedial action taken and results of the remedial action on project performance,

4. A copy of the results of annual packer isolation tests, both the disposal and any wells deemed observation well as a condition of the approval.

5. A copy of the results of annual SCVF tests – disposal and observation wells,
6. A copy of any gas analyses gathered as a condition of the approval. If the nearest wells do not belong to the acid gas well operator, it may be necessary to request the wells be sampled and the analysis shared with the acid gas operator. The Commission expects that best efforts will be made by the acid gas operator and all producers in the vicinity to sample the wells as necessary to ensure safety for all, to submit the samples analyses to the OGC and to have the data publically available. The progress report should summarize all publically available data going forward.

7. A summary table of monthly data for all pertinent operating conditions, from the start of disposal. See example Table 1.

8. Plot(s) of monthly injection volume and average tubing, casing and, if possible, bottom hole pressure versus time on an ongoing basis,

9. A plot showing average daily rate, pressure and wellhead temperature.

10. A plot of current year daily casing pressure values and disposal rates, with an appropriate scale to show variation in pressures.

11. A phase envelope diagram for the maximum and minimum H$_2$S and C0$_2$ range, indicating the average injection pressure and temperature operating conditions as wells as a tubing performance curve and hydrate line (as shown below)

12. From 2017 onward, a summary table of safety valve testing results with comparison to previous tests (a valve operational track record).

13. From 2017 onward, a summary table of ESD function testing results with comparison to previous tests (an ESD track record). Yearly calibration testing and records are sufficient.

14. A summary of accelerometer data for events that have been identified. If no events have occurred, note this on the report.

15. An evaluation of all monitoring done during the reporting period including corrosion protection, logs and any other data collected, all data collected from monitoring wells

16. A reservoir simulation indicating expected plume extent currently and at end of project. The simulation should, as much as possible, represent the reservoir acid gas plume size; extent of H2S, CO2 and pressure influence. A reservoir simulation model such as those created through Computer Modeling Group's GEM software, or similar, would be ideal. However, a simplified plume model taking into consideration rock volume, porosity, hydrocarbon fluid properties and making use of planimetrics will be sufficient.

Modelling can start with plume to-date, and projected to end of disposal project. If there have been samples collected at offset wells, the model can incorporate observed data and knowledge of the reservoir into the plume contours; then projected to end of
disposal project. Identifying the disposal fluid movement is paramount to containment certainty.

17. A discussion of the overall performance of the project,

18. Remaining reservoir storage capacity/life calculation,

19. Any other reporting that is required as a condition of the approval.

Failure to provide a Progress Report by the required date, or omission of information detailed above, are grounds for suspension or termination of a disposal approval.
Sample Table 1

<table>
<thead>
<tr>
<th>Date</th>
<th>Vol Inject</th>
<th>Cum Vol</th>
<th>FVF</th>
<th>Vol Inject</th>
<th>Avg Wellhead Pr</th>
<th>Max Wellhead Pr</th>
<th>Max Casing Pressure</th>
<th>Calculated BHP</th>
<th>Wellhead Temp</th>
<th>%H2S</th>
<th>%CO2</th>
<th>%C1</th>
<th>Sulphur Inj</th>
<th>Cum Sulphur</th>
<th>Cum CO2 Inj</th>
<th>SICP</th>
<th>SITP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1/2015</td>
<td>103m³</td>
<td>106m³</td>
<td>kPa</td>
<td>103m³</td>
<td>kPa</td>
<td>kPa</td>
<td>kPa</td>
<td></td>
</tr>
</tbody>
</table>

Disposal Summary this Report

- Total
- Average
- Maximum

Disposal Summary to Date

- Total
- Average
- Maximum
Sample Phase Diagram with Tubing Performance Curve and Hydrate Line

![Sample Phase Diagram with Tubing Performance Curve and Hydrate Line](image-url)